The Ultimate Vector Kinematics Assignment (9\%)
9401
1.

Which one of the following is a vector quantity?

time
speed energy displacement
2.

A car is travelling at a constant speed of $26.0 \mathrm{~m} / \mathrm{s}$ down a slope which is 12.0° to the horizontal. What is the vertical component of the car's velocity?
(A) $5.41 \mathrm{~m} / \mathrm{s}$
B. $9.80 \mathrm{~m} / \mathrm{s}$
C. $25.4 \mathrm{~m} / \mathrm{s}$
D. $26.0 \mathrm{~m} / \mathrm{s}$

$$
V_{y}=26 \sin 12^{\circ}=5.41
$$

3.

A 1.50 kg projectile is launched at $18.0 \mathrm{~m} / \mathrm{s}$ from level ground. The launch angle is 26.0° above the horizontal. (Assume negligible friction.)
a) What is the maximum height reached by this projectile?

$$
v_{y_{f}}=0 \quad a_{y}=-9,8 m / s^{2}
$$

(5 marks)

$$
\begin{aligned}
L_{y_{i}} & =18 \sin 26 \\
& =789
\end{aligned}
$$

$$
=7.89
$$

$$
U_{x}=18 \cos 26
$$

$$
=16,18
$$

How fast will the projectile be travelling when it is at its maximum height?
(2 marks)

$$
\begin{aligned}
& v_{y}=0 \quad \therefore \quad v=16.2 \mathrm{~m} / \mathrm{s} \\
& v_{x}=16.18 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Physics 12
Unit 1 Kinematics
9501
4.

Initial velocity vector \vec{V}_{0} and final velocity vector \vec{V} are shown below. $\begin{aligned} \Delta \vec{v} & =\vec{v}_{f}-\vec{v}_{i} \\ & =\vec{v}_{f}+\left(-\overrightarrow{v_{i}}\right) \xrightarrow[v_{0}]{\vec{v}}\end{aligned}$

Which of the following represents the change in velocity $\Delta \vec{V}$?
A.

B.

D.

5.

A projectile is launched over level ground with a speed of $240 \mathrm{~m} / \mathrm{s}$ at 35° to the horizontal. If friction is negligible, what is the height of the projectile 17 s after launch?
(A.) $9.2 \times 10^{2} \mathrm{~m}$
B. $1.9 \times 10^{3} \mathrm{~m}$
C. $2.7 \times 10^{3} \mathrm{~m}$
D. $5.5 \times 10^{3} \mathrm{~m}$

$$
\begin{aligned}
t & =17 \mathrm{~s} \\
C_{y_{i}} & =240 \sin 35 \\
& =137.7
\end{aligned}
$$

$$
d_{y}=v_{y_{i}} t+b_{2} a_{y} t^{2}
$$

$$
=(137-7)(17)^{0}-4.9(1.7)^{2}=9.2180^{2} m \begin{aligned}
& t=17 \\
& d y=?
\end{aligned}
$$

Physics 12
Unit 1 Kinematics
9506
6.

A passenger jet needs to reach a speed of $100 \mathrm{~m} / \mathrm{s}$ on the runway for takeoff. If the runway is $2.5 \times 10^{3} \mathrm{~m}$ long, what minimum average acceleration from rest is needed?
A. $0.040 \mathrm{~m} / \mathrm{s}^{2} V_{f}=100$
(B. $2.0 \mathrm{~m} / \mathrm{s}^{2}$
C. $\quad 4.0 \mathrm{~m} / \mathrm{s}^{2}$ $v_{i}=0$

$$
v_{i}-3
$$

D. $10 \mathrm{~m} / \mathrm{s}^{2}$
$d=2.5 \times 10$
$a=$?

$$
v_{f}^{2}=L_{i}^{2}+2 a d
$$

7.

$$
a=\frac{u_{f}^{2}-L_{i} \cdot 2}{2 d}=\frac{100^{2}-0}{2(2500)}=2
$$

The diagram below shows projectile motion in the absence of friction.

This motion can be analyzed in terms of horizontal and vertical velocity components. Explain the behavior of these velocity components, using principles of physics.

9508
8.

At what speed must a ball be thrown upwards to reach a maximum height of 25 m ?
A. $2.6 \mathrm{~m} / \mathrm{s}$
B. $22 \mathrm{~m} / \mathrm{s}$
C. $2.5 \times 10^{2} \mathrm{~m} / \mathrm{s}$
D. $3.1 \times 10^{3} \mathrm{~m} / \mathrm{s}$

$$
\begin{array}{ll}
d_{y}=25 & v_{y_{f}}^{2}=v_{y_{i}}^{2}+2 a d \\
a_{y}=-9,8 & v_{y_{i}}=\sqrt{v_{y_{f}}^{2}-2 a d}=\sqrt{0-2(-9.8)(25)} \\
v_{y_{i}}=? & v_{y_{i}}=\sqrt{490}=22 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Physics 12
Unit 1 Kinematics
9.

A projectile is launched over level ground at $35 \mathrm{~m} / \mathrm{s}$ at an angle of 24° above the horizontal. Friction is negligible.
a) What is the time of flight of this projectile?

$$
\begin{aligned}
& \begin{array}{l}
v_{y_{i}}=35 \sin 24=14,24 \mathrm{~m} / \mathrm{s} \\
a_{y}=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
u_{y_{f}}=-141.24
\end{array} \quad t=\frac{v_{y_{f}}=v_{y_{i}}+9 t}{a}-v_{y_{i}}=\frac{-14.24-14,24}{-9.8}=2.91 \mathrm{~s}
\end{aligned}
$$

What is the velocity (magnitude and direction) of this projectile 2.5 s after launch?

$$
\begin{aligned}
& v_{x}=35 \cos 24=32 \mathrm{~m} / \mathrm{s} \quad U_{y_{f}}=-10.3 \\
& v_{y_{f}}=v_{y_{i}}+a t \\
& v_{y_{f}}=14.24-9.8(2.5) \\
& \xrightarrow[0]{32} \\
& \underset{\sim}{10.3} \\
& \begin{array}{l}
\begin{array}{l}
\vec{u}=33.6^{\mathrm{m} / \mathrm{s}} \\
\text { e/ } 18^{\circ} \mathrm{Cow} \\
\text { horizontal }
\end{array} \\
\hline
\end{array} \\
& 10 .
\end{aligned}
$$

(3 marks)

Which of the following graphs represents the horizontal velocity component $\left(v_{x}\right)$ versus time for a projectile thrown horizontally off a cliff? (Ignore air resistance.) U_{x} is CONSTANT/
A.

C.

B.

D.

Physics 12
Unit 1 Kinematics
11.

A skier accelerates uniformly from $5.2 \mathrm{~m} / \mathrm{s}$ to $12.8 \mathrm{~m} / \mathrm{s}$ at $0.85 \mathrm{~m} / \mathrm{s}^{2}$. Find the distance she travels.

$$
v_{i}=5.2
$$

A. 7.7 m
B. 8.9 m
C. 11 m
D. $80 \mathrm{~m} a=0.85$

$$
\begin{aligned}
& v_{f}^{2}=L_{i}^{2}+2 a d \\
& d=\frac{v_{f}^{2}-v_{i}^{2}}{2 a}=\frac{12.8^{2}-5.2^{2}}{2(.85)}=80.4 \mathrm{~m}
\end{aligned}
$$

12.

A projectile is launched over level ground at $35 \mathrm{~m} / \mathrm{s}$ at an angle of 40° above the horizontal. What is the projectile's time of flight?
A. $2.3 \mathrm{~s} \quad V_{y_{i}}=35 \sin 40=22.5 \mathrm{~m} / \mathrm{s}$

$$
v_{f}=L_{i}+a t
$$

$\begin{array}{ll}\text { C. } 5.5 \mathrm{~s} \\ \text { D. } 7.1 \mathrm{~s} & V_{f} \\ & \\ f\end{array}$

$$
t=\frac{L_{f}-L_{c}}{a}=4.6
$$

13.

$$
a_{y}=-9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

A boat which can travel at $5.6 \mathrm{~m} / \mathrm{s}$ in still water heads due east across a river from a dock at \mathbf{X}. The boat's resultant path is 32° south of east.

$$
\text { current }=5.6 \times \tan 32=3.5 \mathrm{~m} / \mathrm{s}
$$

b) How long will it take the boat to reach the far shore if the river is 185 m wide?

$$
d=u_{i} t+\frac{1}{2} g t^{2} \quad t=\frac{d}{v}=\frac{185}{56}=33.0 \mathrm{~s}
$$

Physics 12
Unit 1 Kinematics
9606
14.

Which of the following remains) constant for a projectile: its horizontal velocity component, v_{H}, its vertical velocity component, v_{V}, its vertical acceleration, g ?
A. v_{V}
B. g and v_{V}
c. g and v_{H}
D. g, v_{H} and v_{V}
15.

A pilot points an aircraft due east, while the wind blows from the south.

The resultant velocity of the aircraft over the ground is $64 \mathrm{~m} / \mathrm{s}, 25^{\circ} \mathrm{N}$ of E . At what speed does the wind blow?

D. $58 \mathrm{~m} / \mathrm{s}$
16. A soccer ball is kicked over level ground with an initial velocity of $18 \mathrm{~m} / \mathrm{s}, 24^{\circ}$ above the horizontal.
a) How long does it take the ball to return to the ground?
(4 marks)
b) What is the range of the ball?

$$
\begin{aligned}
& \text { a) } U_{y_{i}}=18 \sin 24=7.32 \mathrm{~m} / \mathrm{s} \\
& a_{y}=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& u_{y_{f}}=-7.32 \mathrm{~m} / \mathrm{s} \\
& t=\frac{v_{f}-l_{i}}{a}=\frac{-7.32-7.32}{-9.8}=1.5 \mathrm{~s} \\
& \text { b) } d_{x}=v_{x} t=(18 \cos 24)(1.5)=24.7 \mathrm{~m}
\end{aligned}
$$

Physics 12
Unit 1 Kinematics
9608
N ${ }^{17 .}$
An airplane which was flying eastward is later flying southward at the same speed. Which vector shows the airplane's change in velocity?
A.

B.

$$
\Delta \vec{v}=v_{f}+\left(-\stackrel{\rightharpoonup}{v}_{i}\right)
$$

$$
-v_{i}
$$

18.

At $t=0 \mathrm{~s}$ a ball rolls off the edge of a vertical cliff. At $t=2.0 \mathrm{~s}$ the ball is 6.0 m from the cliff as shown.

How far is the ball from the cliff at $t=4.0 \mathrm{~s}$?
A. 6.0 m
B. 9.0 m
C. 12 m

9701
19.

Which of the following statements concerning vector and scalar quantities is incorrect?
(A. All scalar quantities have direction.
B. All vector quantities have direction.
¢. All scalar quantities have magnitude.
D. All vector quantities have magnitude.

Physics 12
Unit 1 Kinematics
20.

Two forces act on an object as shown in the diagram.

Which of the following best shows the resultant R of these forces?
A.

C.

B.

D.

21. Starting from rest, a jet takes 25 s and needs 1500 m of runway to become airborne. What is its speed when it leaves the ground?

$$
\begin{aligned}
& \text { A. } 60 \mathrm{~m} / \mathrm{s} \quad \text { B. } 120 \mathrm{~m} / \mathrm{s} \text { C. } 250 \mathrm{~m} / \mathrm{s} \\
& d=1500 \quad t=25 \\
& d=v ; t+\frac{1}{2} a t^{2} \\
& a=\frac{d-v_{i} t}{\frac{1}{2} t^{2}} \\
& L_{f}=b_{i}+a t \\
& =0+(4,8)(25)=120 \mathrm{~m} / \mathrm{s} \\
& a=\frac{1500}{1 / 2(25)^{2}}=4,8^{\mathrm{m} / \mathrm{s}^{2}}
\end{aligned}
$$

Physics 12
Unit 1 Kinematics
22. A projectile is launched over level ground at $85 \mathrm{~m} / \mathrm{s}, 25^{\circ}$ above the horizontal. Ignore air resistance.
a) Calculate the range of the projectile.

$$
\begin{aligned}
& \text { (5 marks) } v_{y_{i}}=35.9 \\
& v_{y_{f}}=-35.9 \\
& a_{y}=-9.8 \\
& t=\frac{v_{f}-v_{i}}{a}=-\frac{35.9-35.9}{-9.8} \\
& t=7.32 \mathrm{~s}
\end{aligned}
$$

$$
d_{x}=v_{x} t=(77)(7.32)=5.6 \times 10^{2} \mathrm{~m}
$$

b) Using principles of physics, comment on the horizontal and vertical components of the projectile's velocity and acceleration during the flight.

Physics 12
Unit 1 Kinematics
9706
23.

When a 2.0 kg rock is dropped from a cliff it hits the beach at $24 \mathrm{~m} / \mathrm{s}$. At what speed would a 4.0 kg rock, dropped from the same cliff, hit the beach? Ignore friction.
A. $12 \mathrm{~m} / \mathrm{s}$
B. $24 \mathrm{~m} / \mathrm{s}$
C. $34 \mathrm{~m} / \mathrm{s}$
same speed,
rreelevant
$\sin u$
Mass is
D. $48 \mathrm{~m} / \mathrm{s}$
24.

N Pamela swims at $2.8 \mathrm{~m} / \mathrm{s}$ relative to the water, heading west. The current flows south at $1.2 \mathrm{~m} / \mathrm{s}$. $\in \quad$ Find Pamela's resultant direction.
A. $23^{\circ} \mathrm{S}$ of W
B. $25^{\circ} \mathrm{S}$ of W
C. $23^{\circ} \mathrm{N}$ of W
D. $25^{\circ} \mathrm{N}$ of W

25.

Mike runs horizontally off a cliff at $6.5 \mathrm{~m} / \mathrm{s}$ and lands in the water 15 m from the base of the cliff.

a) How long does it take Mike to hit the water?

$$
\begin{aligned}
& d_{x}=v_{x} t+\frac{1}{2} t_{x} \\
& t=\frac{d_{x}}{v_{x}}=\frac{15}{6.5}=2.31 \mathrm{~s}
\end{aligned}
$$

Physics 12
Unit 1 Kinematics
b) How high is the cliff?

$$
\begin{aligned}
& t=2.31 \mathrm{~s} \quad v_{y_{i}}=0 \quad a_{y}=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& d_{y}=v_{y} \not t+\frac{1}{2} a_{y} t^{2} \\
& d_{y}=\frac{1}{2}(-9.8)(2.31)^{2}=26.1 \mathrm{~m}
\end{aligned}
$$

Physics 12
Unit 1 Kinematics
9708
26.

The projectile shown below has an acceleration which is

A. zero.
B. in the direction of P .
only F_{g} is acting on
C. in the direction of Q .
projectile
27.

An object is launched at 65° to the horizontal with an initial speed of $25 \mathrm{~m} / \mathrm{s}$. What is the maximum height reached by this object?
A. $5.7 \mathrm{~m}, V_{y_{i}}=25 \sin 65=22.66$
C. $32 \mathrm{~m} \vee_{y_{f}}=0$

$$
d=\frac{v_{f}^{2}-v_{i}^{2}}{}=26.2 \mathrm{~m}
$$

9806
28.

$$
a_{y}=-9.8
$$

$$
2 a
$$

A ball is kicked into the air from the surface of a playing field. If friction is negligible, the ball will follow a path that is
A. circular.
B. elliptical
C. parabolic.
D. hyperbolic.

Physics 12
Unit 1 Kinematics
29.

A rock is thrown from ground level at $18 \mathrm{~m} / \mathrm{s}, 25^{\circ}$ above horizontal. What are the vertical and horizontal components of its launch velocity?

$$
\begin{aligned}
& U_{y}=18 \sin 25 \\
& U_{x}=18 \cos 25
\end{aligned}
$$

30
A motorcycle accelerates uniformly from $12 \mathrm{~m} / \mathrm{s}$ to $30 \mathrm{~m} / \mathrm{s}$ while travelling 420 m . Its acceleration is
A. $\quad 0.043 \mathrm{~m} / \mathrm{s}^{2}$

C. $\quad 0.10 \mathrm{~m} / \mathrm{s}^{2}$
D. $\quad 0.90 \mathrm{~m} / \mathrm{s}^{2}$

9808
31.

A rock is thrown from a clifftop at $18 \mathrm{~m} / \mathrm{s}, 25^{\circ}$ above the horizontal. It lands on the beach 4.2 s later.

a) $t=4.2$

$v_{y_{i}}=7.61 \mathrm{~m} / \mathrm{s}$
$a_{y}=-9.8$
$d_{y}=v_{y i} t+\frac{1}{2} a t^{2}$
$d_{y}=54.5 \mathrm{~m}$

a) What is the height h of the cliff?
b) How far from the base of the cliff d did the rock land?

$$
d_{x}=l_{x} t=(18 \cos 25)(4,2)=68,5 \mathrm{~m}
$$

Physics 12
Unit 1 Kinematics

9901
32.

A student collects data from the path of a projectile similar to that shown in the diagram.

The student records the following data for horizontal displacement from the initial launch position as a function of time.

$d_{x}(\mathrm{~cm})$	0.0	0.5	0.9	1.5	1.9	2.5	3.1
$t(\mathrm{~s})$	0.000	0.020	0.040	0.060	0.080	0.100	0.120

a) Plot a graph of d_{x} vs. t on the graph below.
(2 marks)

b) Calculate the slope of the line, giving your answer in appropriate units. (2 marks)

$$
m=\frac{2.5-0}{.1-0}=25 \mathrm{~cm} / \mathrm{s}
$$

c) Based on this data and this graph, make a statement about projectiles. (1 mark)

$$
\begin{aligned}
& \text { slope is constant } \\
& \therefore v_{x} \text { is constant, } \operatorname{since} v_{x}=\frac{d x}{t}
\end{aligned}
$$

Physics 12
Unit 1 Kinematics
33. Scholarship question: A 0.50 kg ball is thrown at 42° above the horizontal at $19 \mathrm{~m} / \mathrm{s}$ from the hot air balloon when the balloon is 25 m above the ground. The balloon is traveling upwards at a constant velocity of $3.5 \mathrm{~m} / \mathrm{s}$.

What is the range?

$$
\begin{array}{ll}
v_{y_{i}}=16.2 \mathrm{~m} / \mathrm{s} & a_{y}=-9.8 \\
d_{y}=-25 \mathrm{~m} & \text { need time }
\end{array}
$$ $d_{y}=v_{y} t+\frac{1}{2} a t^{2}$

$$
4.9 t^{2}-16.2 t-25=0
$$

use quadratic
formula

$$
d_{x}=w_{x} t=(14.12)(4.45)=62.8 \mathrm{~m}
$$

Physics 12
Unit 1 Kinematics
0006
34.

Which of the following graphs best illustrates the horizontal displacement of a projectile as a function of time? Ignore friction.
A.

C.

B.

slope is U_{x} which is constant

0206
35.

A projectile is launched towards a wall as shown in the diagram below.
$\theta=\tan ^{-1}\left(\frac{4.8}{20.5}\right)$

With what velocity (magnitude and direction) does the projectile hit the wall?
need t mme

$$
d_{x}=v_{x} t \rightarrow \quad t=\frac{d_{x}}{v_{x}}=\frac{40}{25 \cos \left(35^{\circ}\right)}=1.95 \mathrm{~s}
$$

$v_{y_{f}}=v_{y_{i}}+a t=14.34+(-9.8)(1.95)=-4.8 \mathrm{~m} / \mathrm{s}$

below horizontal

Physics 12
Unit 1 Kinematics
36. Scholarship question!

1. A rocket accelerates at $25 \mathrm{~m} / \mathrm{s}^{2}$ from rest on a frictionless inclined surface. The rocket stops firing at
the instant it leaves the incline.

If air resistance is negligible, what is the distance R to the point of impact?

$$
\begin{aligned}
& d_{\operatorname{ramp}=\frac{70}{\sin 32}=132.1 \mathrm{~m}}^{a=25} \\
& u_{0}=0 \\
& u_{f}=?
\end{aligned}
$$

(12 marks)

$$
\begin{aligned}
& v_{f}^{2}=v_{i}^{2}+2 a d \\
& v_{f}=\sqrt{0+2(25)(132.1)}=81.3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& -70=43.1 t-4.9 t^{2} \\
& 4.9 t^{2}-43.1 t-70=0 \text { use quad, form. } \\
& t=10.2,-1,4 \\
& \text { Now, } d_{x}=v_{x} t+\frac{1}{y} y_{x} t^{2} \\
& \left.d_{x}=168.92\right)(10.2)=703 \mathrm{~m}
\end{aligned}
$$

37. Find the range of the following projectile:
(7 marks)

$$
\begin{aligned}
& \text { find } v_{y_{f}}!\quad v_{y_{f}}=\sqrt{v_{y_{c}^{2}}^{2}+2 a_{y} d} \quad \begin{array}{l}
\text { down, so } \\
\text { negative! }
\end{array} \\
& v_{y_{f}}=\sqrt{15.321^{2}+2(-9.8)(-20)}=25.035 \mathrm{~m}_{\mathrm{s}}=-25.035 \mathrm{~m} / \mathrm{s} \\
& t=\frac{v_{f_{y}}-v_{i_{y}}}{a_{y}}=\frac{-25.035-15.321}{-9.8}=4.1179 \mathrm{~s}
\end{aligned}
$$

Hori:

$$
d_{x}=v_{x} t=(12.856)(4.1179)=52.9 \mathrm{~m}
$$

Physics 12
Unit 1 Kinematics
38. Find the impact velocity for the previous question.
(7 marks)
from previous question...

$$
V_{x}=12.856 \text { and } U_{y_{f}}=-25.035
$$

Now, draw vector Δ

$$
V_{i m p}^{2}=12.856^{2}+25.035^{2}
$$

$$
25.035
$$

$$
\begin{gathered}
\text { Simp }=28!\mathrm{m} / \mathrm{s} @ 62.8^{\circ} \\
\text { below the } \\
\text { horizontal }
\end{gathered}
$$

$$
\begin{aligned}
& \tan \theta=\frac{25.035}{12.856} \\
& \theta=\tan ^{-1}\left(\frac{25.035}{12.856}\right)
\end{aligned}
$$

$\theta=62.6^{\circ}$

Physics 12
Unit 1 Kinematics
39. Find the range of the following, if $\mathrm{v}=42 \mathrm{~m} / \mathrm{s}, \theta=24^{\circ}$, and $\mathrm{h}=56 \mathrm{~m}$.
(7 marks)

Vert

$$
\left.\begin{array}{l}
\text { Find } v_{y_{f}}!v_{y_{f}}=\sqrt{v_{i}^{2}+2 a d}=\begin{array}{l}
\text { down ward, so } \\
\text { reg a tire! }
\end{array} \\
v_{y_{f}}=\sqrt{17.083^{2}+2(-9.8)(-56)}=-37.275 \mathrm{~m} / \mathrm{s}
\end{array}\right] \begin{aligned}
& t=\frac{v_{y_{f}}-v_{y_{i}}}{a_{y}}=\frac{-37.275-17.083}{-9.8}=5.5467 \mathrm{~s}
\end{aligned}
$$

Hor

$$
d_{x}=v_{x} t:(38.369)(5.5467)=213 \mathrm{~m}
$$

Physics 12
 Unit 1 Kinematics

Answers:

1. d
2. a
3. a) 3.18 m b$) 16.2 \mathrm{~m} / \mathrm{s}$
4. c
5. a
6. b
7.

- The horizontal velocity component is constant. 1 mark
- The vertical velocity component constantly changes. $\mathbf{1}$ mark
- This vertical acceleration is caused by the force of gravity. $\mathbf{1}$ mark
- The downward direction of the change in velocity / acceleration / force must be mentioned. 1 mark

8. b
9. a) 2.9 s b) $34 \mathrm{~m} / \mathrm{s} @ 18^{\circ}$ below the horizontal
10. c
11. d
12. b
13. a) $3.5 \mathrm{~m} / \mathrm{s} \quad$ b) 33 s
14. c
15. b
16. a) $\mathrm{t}=1.49 \mathrm{~s} \quad$ b) 25 m
17. d
18. c
19. a
20. c
21. b
22. a) $5.6 \times 10^{2} \mathrm{~m}$
b)

The horizontal component of velocity remains constant. There is no horizontal
acceleration (assuming air resistance is negligible).
$\leftarrow 2$ marks
The vertical component of velocity changes continuously during the flight. $\leftarrow 1$ mark
The vertical acceleration is constant at $9.8 \mathrm{~m} / \mathrm{s}^{2}$, downward, throughout the
flight. $\leftarrow 1$ mark
23. b
24. a
25. a) $2.3 \mathrm{~s} \mathrm{b)} 26 \mathrm{~m}$
26. d
27. b
28. c
29. b
30. d
31. a) $\mathrm{h}=54 \mathrm{~m} \quad$ b) range $=69 \mathrm{~m}$
32. b) $25 \mathrm{~cm} / \mathrm{s}$. The slope is horizontal velocity
c) Since the slope is constant, the horizontal velocity of projectiles is constant
33. 62.8 m
34. d
35. $21 \mathrm{~m} / \mathrm{s} @ 13^{\circ}$ below the horizontal
36. $\mathrm{v}=703 \mathrm{~m}$
37. $\mathrm{d}=52.9 \mathrm{~m}$
38. $\mathrm{v}=28.1 \mathrm{~m} / \mathrm{s} @ 62.8^{\circ}$ below the horizontal
39. $\mathrm{d}=213 \mathrm{~m}$

