Lesson 4 Series and Parallel Circuits

May 9, 2020 12:00 PM

•example 3: Select the best answer for the voltage drop across the 20 Ω resistor

•example 4: find total resistance and current, then find the current through and voltage drop across each resistor

•a parallel circuit is a circuit where resistors start and end at the same voltage (height)...i.e. the resistors are directly connected at the top and at the bottom with no other resistors in between

•example 5: which circuit shows resistors in (simple) parallel?

•example 6: find an expression for the total resistance of a parallel circuit

KVL says:

KCL says:

total resistance $\frac{1}{R_t}$ =

• example 8 illustrates an important point. It shows us that the voltage drop across parallel resistors is the same as the drop across the equivalent resistor in the equivalent circuit.

•In a household circuit, plugs and lights are wired in parallel to 120 volts AC. Each circuit has a circuit breaker in the circuit. The circuit breaker is an automatic switch that opens when the current exceeds a set value(15 Amp usually). When the switch is opened, no more current flows through the circuit.

•example 9: If we connect a 1200 Watt hairdryer and a 500 Watt TV to the same circuit, will we cause the 15 A breaker to trip?

The breaker will not trip. (barely)

Exercises

1. Find all unknown voltages and currents(2.5 A,15V; 2.5A, 25V; 2.5 A, 20. V)

2) Find all unknown voltages and currents (6.0 A,12 V; 6.0 A, 48 V; 6.0 A,60. V)

3. Find all unknown voltages, currents and resistances

 $(5.0~\Omega, 40.~V; 8.0~A, 2.5~\Omega; 8.0~A, 40~V)$

Which resistors are in series?

Ans: (R7 and R8), (R3 and R4)

6. Find all voltage drops and currents

(120 V, 12A; 120V,8.0A;120V,4.0A)

- 7. Find the total current in #6 if we
 - a) remove the 15 ohm

(16A)

b) remove the 30. ohm

(20. A)

c) add another 10. ohm in parallel (36 A)

d) add a 120 ohm in parallel

(25 A)

8 Find all voltage drops and currents (120. V,0.833 A;120.V, 6.67 A; 120. V,1.67 A)

- i) In household circuit #8, find the total current if we make the following changes to the circuit.
- ii) Indicate (yes or no) if these changes would cause the circuit breaker to trip (this happens when the total current exceeds 15.0 A)
 - a) adding another 100. W light (in parallel) (no, I_t =10.0 A)
 - b) removing the 800. W microwave (no $I_t=2.50 A$)
 - c) adding a 1400. W hair dryer (in parallel) (yes I_t = 20.8 A)
 - d) adding a 300. W computer (in parallel) (no $I_t = 11.7 \text{ A}$)
- (10) What is the maximum number of the following in a house circuit (note: an outlet has V=120 V, and max current
 - a) 100 W light bulbs
- b) 250 W TV's
- b) 10 W toothbrushes
- d) 800 W toasters

(18; 7;180; 2)

Which resistors are in parallel?

Ans: (R1 and R4), (R2 and R3), (R5 and R6)

14 If we add a resistor in parallel to a parallel circuit, what happens to the total resistance?

- a) it increases
- b) it decreases
- c) it may increase or decrease depending on the value of the resistance we add.

Ans: (b) Bonus: Can you prove it?

15

What is the power dissipated in the 8.0Ω resistor in the circuit as shown?

Ans: 26 W