	Physics 11		Unit 6 Momentum	Name:			
	Lesson 1: Mon	<u>nentum</u>					
	·momentum means	'the amount of mot	on an object has'.				
		amount of motion large or small?		mount of motion is (comparatively) Cannonball fired From Connon Amount of motion Large or small?			
SMal	U	longe	large or small?	huge!!!			
	Explain your answe	er:	•	•			
	since momentum depends on both mass and speed, we can it the 'motion product' and use the letter p (for product). Momentum is a <u>vector</u> quantity; its direction is the same as the velocity vector. Here we can write a vector equation:						
	Momentum	n = mass x velocity	ko m				
			p =momentum=moti	on product (kg m/s)			
			m=mass (kg)				
	v= velocity (m/s)						
•Note that a Newton second can also be used as a momentum unit:				t :			
$V \cdot s = kg \frac{m}{s^2} \cdot s = kg \frac{m}{s}$		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					

·example 1:

- a) Estimate the magnitude of the momentum of a top pitcher's fastball
- b) Estimate the magnitude of the momentum of a person & bicycle on a relaxed ride
- c) Estimate the magnitude of the momentum of a car driving on a city street

	estimate mass	estimate speed	estimate momentum	
fastball	0.15 kg	2100 mgh 40 1/3	G kg mg	ouch! pain
bike & rider	90 kg	36 kn/h 10 %	approx	<i>ં</i> ગુપ્તપૃ
car	1000 kg	100 km/h approx	30,000 kg/	RIP

- Ex 2: A baseball of mass 0.14 kg is moving at 35 m/s.
- (a) Find the magnitude of the momentum of the baseball.
- (b) Find the magnitude of the velocity at which a bowling ball, mass 7.26 kg, would have the same momentum as the baseball.

Ex. 3) A 12 kg rock is dropped from a 75 m high cliff. What is its momentum upon impact

(magnitude and direction)?

v=0 a=-9.8

d=-7

Prmv

7 2 1/2 + 29 3

= \(\sigma (-9.8)(-75) = -38.8 \%

p=(12)(38.3)=460 kg m/g down

Lesson 1 Homework:

- 40		
1	The momentum of an object depends upon the object's	(Pick two quantities.)
100	The momentum of an object depends apon the object s	(i ick iwo qualifilies.)

- a. mass how much stuff it has
- b. acceleration the rate at which the stuff changes its velocity
- c. weight the force by which gravity attracts the stuff to Earth
- d. velocity how fast and in what direction it's stuff is moving
- e. position where the stuff is at

(ans: a, d)

(2) Momentum is a _____ quantity. a. scalar b. vector

(ans: b)

3 Which are complete, correct descriptions of the momentum of an object? Circle all that apply.

a. 2.0 kg/s

b. 7.2 kg·m/s, right

c. 6.1 kg·m/s², down

d. 4.2 m/s, east

e. 1.9 kg·m/s, west

f. 2.3 kg·m/s

(ans: b, e) Note: (f) is a momentum magnitude, but it's missing a direction

4 The two quantities needed to calculate an object's momentum are _____ and

(see #1 for the answer)

5 Consider the mass and velocity values of Objects A and B below.

Compared to Object B, Object A has ____ momentum.

a. two times the

b. four times the

c. eight times the

d. the same

e. one-half the

f. one-fourth the

g. ... impossible to tell without knowledge of the F

and a.

Ans: a

Physics	1	1
1 1173163	_	d

Unit 6 Momentum

Name:	

6 Calculate the momentum of ... (Include appropriate units on your answers.) a. ... a 2.0-kg brick moving through the air due west at 12 m/s.

b. ... a 3.5-kg wagon moving south along the sidewalk at 1.2 m/s.

(ans: 24 kg m/s West, 4.2 kg m/s South)

- With what velocity must a 0.53-kg softball be moving to equal the momentum of a 0.31-kg baseball moving at 21 m/s? (12.3 m/s)
- (32000 kg m/s west) 8. Calculate the momentum of a 1.60 \times 10³ kg car traveling at West at 20.0 m/s.
- Q Calculate the momentum of a 2.50×10^3 kg truck traveling north at 110 km/h. (76400 kg m/s north)
- 10 How fast is a 1.50 kg ball moving if it has a momentum of 4.50 kg m/s east? (3.0 m/s east)
- 1) A 75.0 g ball is rolling at a speed of 57.0 cm/s. Calculate the magnitude of the ball's momentum. (0.043 kg m/s \leftarrow check the units carefully!)
- 12 A 5.00 kg ball traveling at 6.0 m/s accelerates at a rate of 2.00 m/s² for 1.50 seconds. Calculate the ball's momentum after the acceleration. (45 kg m/s)
- (13) A 2.00 kg rock is dropped from the top of a 30.0 m high building. Calculate the ball's momentum at the time that it strikes the ground. (-48.5 kg m/s or 48.5 kg m/s down)
- [4]A 1.50 kg rock is thrown up into the air from ground level, reaches a maximum height of 7.00 m, and then returns to the ground. Calculate the rock's momentum as it strikes the ground.

(-17.6 kg m/s or 17.6 kg m/s down)

Desmos scientific calculator app