Multiple Choice Section

1. (specs-01)

How many terms are in the expansion $\left(2x-\frac{1}{y}\right)^{10}$?

10

2. (specs-02)

A bowl contains an apple, a pear, a plum, and a banana. How many different pairs of fruit can be selected from the bowl?

A. 4P2

 $_2P_4$

3. (specs-03)

A special combination lock that has 60 numbers on the dial works by turning it first to the right, then to the left, and then to the right, with 3 different selected numbers needed to open the lock. The selection of these 3 numbers is an example of

order matters/

a permutation.

B. a combination.

both a combination and a permutation.

D. neither a combination nor a permutation.

4. (specs-04)

There are 45 multiple-choice questions on an exam with 4 possible answers for each question. How many different ways are there to complete the test?

45 A.

В. 148 995

C. 3 575 880

 4^{45}

D.

5. (specs-06)

North American area codes are three digit numbers. Before 1995, area codes had the following restrictions: the first digit could not be 0 or 8, the second digit was either 0 or 1, and the third digit was any number from 1 through 9 inclusive. Under these rules, how many different area codes were possible?

112

6. (specs-09)

The 10th term of the expansion of $\left(x-\frac{1}{2}\right)^n$ is $-\frac{1001}{256}x^5$. Determine n.

13 14

... count on your fingers!

not possible to determine n from the given information

7. (specs-05)

A breakfast special consists of choosing one item from each category in the following menu.

Juice: apple, orange, grapefruit

Toast: white, brown

Eggs: scrambled, fried, poached

Beverage: coffee, tea, milk

How many different breakfast specials are possible?

48 C 54

8. (specs-07)

96 D.

Katie wants to colour a rainbow. She knows the seven colours that make up a rainbow, but can't remember the correct order. How many different ways could the colours be arranged assuming each colour is used only once?

A. 28

В. 128

720 5 040

9. (specs-08)

Simplify the following expression without using the factorial symbol

10. (specs-10)

Linda and Sam play a tennis match. The first person to win 2 games wins the match. In how many different ways can a winner be determined?

3

11. (specs-11)

How many 6 digit numbers greater than 800 000 can be made from the digits 1, 1, 5, 5, 5, 8 ?

10

В. 60 C. 64

D. 120

12 ((specs-1	12
12. (Specs-	LZ.

In how many ways can four colas, three iced teas, and three orange juices be distributed among ten graduates if each graduate is to receive one beverage?

13. (specs-13)

Solve for n: $_{n}P_{2} = 42$

14. (specs-14)

Assuming that at least one coin is used, how many different sums of money can be made from the following coins: a penny, a nickel, a dime, a quarter, and a dollar?

15. (specs-15)

$$\frac{1}{20} = \frac{1}{18} = \frac{2}{18} = \frac{1}{16} = \frac{1}{16}$$

16. (specs-16)

Moving only to the right or down, how many different routes exist to get from point A to point B?

- A. :
- B.
- C. 7 D. 8

17. (sample02-32)

How many different committees of 2 people can be selected from 5 people?

- A. $\frac{5!}{2!}$
- B. 5
- 5! 2!3!
- D. 5!

18. (sample02-33)

Determine the 5th term in the expansion of $\left(x - \frac{1}{2}y\right)^7$.

B.
$$\frac{35}{8}x^4y^3$$

$$-\frac{35}{8}x^4y^5$$

D.
$$-\frac{35}{16}x^3y^4$$

$$t_5 = 35x^3 \left(\frac{1}{16}\right)y^4$$

19. (sample02-34)

Moving only to the right or down, how many different paths exist to get from point A to point B?

- 22 A. 60
- 120 144
- 20. (jan02-33)

Determine the 4th term of $(x-2)^6$.

the the 4th term of
$$(x-2)^6$$
.

B.
$$240x^2$$

 $-160x^3$
D. $-320x^3$

$$t_4 = 6(3 x^3 (-z)^3$$

21. (jan02-32)

When you play lotto 5-30, you must choose 5 different integers from 1 to 30. How many combinations are possible?

D.
$$\frac{30!}{5!}$$

22. (jan02-34)

Determine the number of different arrangements of all the letters in APPLEPIE.

23. (jan02-35)

Assume a car license plate consists of 7 characters. The first 3 characters can be any of the letters from A to F, but no letter can be repeated. The next 3 characters can be any of the digits from 1 to 9, but no digit can be repeated. The last character can be any of the letters X, Y or Z. An example of this format is: BFA648Y. How many license plates are possible?

6549673

4 084 080

24. (apr02-32)

A soccer coach must choose 3 out of 10 players to kick tie-breaking penalty shots. Assuming the coach must designate the order of the 3 players, determine the number of different arrangements she has available.

B.
$$\frac{10!}{3!}$$

D.
$$\frac{10!}{3!3!4!}$$

25. (apr02-33)

Determine the 4th term in the expansion of $(x-2y)^5$.

Express 33C5 using factorial notation.

B.
$$\frac{33!}{28!}$$

27. (jun02-33)

Determine the 3rd term in the expansion of $(x-y)^{10}$.

A.
$$-45x^8y^2$$
B. $-120x^7y^3$
O $45x^8y^2$
D. $120x^7y^3$
 $= 45x^8y^2$

28. (aug02-32)

How many different pasta meals can be made from 4 choices of pasta and 2 choices of sauces, if only one pasta and one sauce is selected for each meal?

29. (aug02-33)

A man has 7 different pets and wishes to photograph them 3 at a time arranged in a line. How many different arrangements are possible?

30. (aug02-35)

Moving only to the right or down, how many different paths exist to get from point P to point Q?

31. (aug02-34)

Determine the 3^{rd} term of $(2x + y)^6$.

$$15x^{4}y^{2}$$
 $240x^{4}y^{2}$

$$\frac{15x^4y^2}{240x^4y^2} + \frac{1}{3} = CC_2 + (2x)^4 + (y)^2$$

32. (aug02-36)

Which expression is equivalent to ${}_{n}C_{2}$?

A.
$$n^2-2n$$

B.
$$n^2 - n$$

A.
$$n^{2}-2n$$
B. $n^{2}-n$
C. $\frac{1}{2}(n^{2}-2n)$
A. $(n-2)!$
D. $(n-1)(n-2)!$
D. $(n-2)!$

D.
$$\frac{1}{2}(n^2 - n)$$

33. (jan03-34)

Moving only to the right or down, how many different paths are there from A to B?

Simplify:
$$\frac{n(n+1)!}{(n-1)!} = \frac{n(n+1)!}{(n+1)!} = \frac{n(n+1)!}{(n+1)!}$$

B.
$$n!(n^2+n)$$

$$D n^3 + n^2$$

35. (jan03-36)

In the expansion of $(2a-3b)^6$, determine the coefficient of the term containing a^4b^2 .

A.
$$-4320$$
B. 864
C. 2160
D. 2880
 $3 = 6C_2 (2a)^4 (-3b)^2 = 2160 a^4b^2$

36. (apr03-34)

When playing the 6/49 lottery, a customer must choose 6 different numbers from 1 to 49 inclusive. How many combinations are possible?

C.
$$\frac{49!}{43!}$$

D.
$$\frac{49!}{6!}$$

37. (apr03-35)

Twelve buttons differ only by colour. There are 4 red buttons, 4 green buttons and 4 yellow buttons. If the buttons are placed in a row, how many different arrangements are possible?

RRR GGGG YYYY

How many odd 3-digit whole numbers are there? For example, 203 is acceptable but 023 is not.

How many terms are in the expansion of $(2x+y)^9$?

= (n-1)(n-2)! Simplify: $\frac{(n-2)!}{(n-1)!}$

B.
$$n-2$$

$$C. \frac{1}{n-1}$$

D.
$$\frac{1}{n(n-1)}$$

41. (jun03-36)

Moving only to the right or down, how many different routes are there from A to B?

42. (aug03-34)

Car license plates consist of 6 characters. Each of the first 3 characters can be any letter from A to Z inclusive except I or O. Each of the last 3 characters can be any digit from 2 to 9 inclusive. If repetitions of letters and digits are not allowed, how many different license plates are possible? An example of this format is GRT 492.

7 077 888 C.

11 232 000

43. (aug03-35)

Determine the first three terms in the expansion of $(x+2y)^{10}$.

44. (aug03-36)

From a class of 12 boys and 10 girls a committee of 3 people is selected. How many different committees have at least 1 boy?

45. (jan04-29)

A couple is planning an evening out. They have a choice of 4 restaurants for dinner, 6 movies following dinner, and 4 coffee establishments for after the movie. How many different ways can they plan the evening if they choose one of each?

46. (jan04-30)

How many different ways are there to arrange the letters in the word TSAWWASSEN?

47. (apr04-29)

Given Pascal's triangle below, which of the following is equivalent to the value of x?

48. (apr04-30)

Determine the number of different arrangements of the letters in the word NANAIMO.

49. (jun04-29)

A student has 7 different textbooks. Which expression gives the number of different ways 4 of these books can be selected and arranged on a shelf?

B.
$$\frac{7!}{4!}$$

50. (jun04-30)

Determine the 8th term in the expansion of $(2x-y)^{11}$.

51. (jun04-31)

The diagram below represents a street map. If a person can only travel east or south on the streets, how many different routes are there from A to B?

D. 200

Use the following information to answer questions 52 and 53.

The winner of a lottery chooses 4 vehicles from a warehouse that contains 12 different cars, 8 different trucks, and 5 different motorcycles.

52. (jun04-32)

How many different choices of 4 vehicles are possible?

53. (jun04-33)

How many different choices of 4 vehicles are possible if there must be at least one car?

B. 3 432

54. (jan04-14)

Consider the geometric sequence 1, (a+b), $(a+b)^2$

Which term of this geometric sequence, when expanded, contains the expression $35a^4b^3$?

- A. 5th term
- B. 6th term
- C. 7th term
- D 8th term

OMIT

55. (aug04-29)

Determine the number of terms in the expansion of $(a+b)^7$.

- A. 6
- <u>*</u>
- C. 8
- D. 9

56. (aug04-30)

Moving only to the right or down, determine the number of different pathways from A to B.

- A. 13
- 24
- 60
- D. 80

57. (aug04-31)

Codes with 5 digits are made from the digits 1, 2, 3, 4, 5, 6, 7, 8, 9. If repetitions are not permitted and each code must contain 2 odd digits followed by 3 even digits, determine the number of different codes that can be made.

- 126 480

1600 D. 15120

Use the following information to answer questions 58 and 59.

A class of 14 students is made up of 6 girls and 8 boys. From this class, a group of 5 students is chosen to represent the class at a competition.

58. (aug04-32)

Determine the number of different groups of 5 that can be formed if there must be 2 girls and 3 boys in each group.

- 71 560 C. 840
 - 8C3x6C2 10 080

59. (aug04-33)

Determine the number of different groups of 5 that can be formed if there must be at most 1 boy in each group.

- 23
- В. 30
- 120 126

Written Section

1. (specs-17)

Sears wants to build 8 new stores in western Canada. They have the following information.

Number of stores to be built	Number of possible locations	6C2 x 5 C3 x 4 C1 x 5 C2
2	6	
3	5	- 6
1	4	= 6000
2	5	
		to be built locations

If Sears wants to study all possibilities for the location of the 8 new stores, how many different possibilities would the company have to consider?

2. (specs-18)

3. (specs-19)

 $0^{2} - 0 - 30 =$

3. (specs-19)
Solve:
$$\frac{n!}{(n-2)!3!} = 5$$

$$\frac{n(n-1)(n-2)!}{(n-2)!} = 5$$

$$(n-6)(n+5) = 5$$

$$n(n-1) = 30$$

$$n = 6, - 5$$

4. (specs-20)

Numbers are formed on a calculator using seven lines which are either lit or not lit. The diagram below shows the number 8 formed using all 7 lines lit. How many different symbols can be created by lighting one or more of these 7 lines? (Count all the symbols, not just the ones that represent numbers.)

7 lines can be turned on or off

2 2 2 2 2 2 2 2 2 4 2 choices for each line

However, one of the possibilities includes every line turned off. The question says that at least one line must be turned on.

1. 128 -1 = 127

5. (specs-21)

There are five boys and six girls on a grad committee.

a) In how many ways can a sub-committee of two boys and two girls be selected from the committee?

b) In how many ways can a sub-committee of four people be selected if there must be at least one girl on the sub-committee?

Solve algebraically:
$$\frac{n!}{(n-2)!4!} = 10 \qquad \leftarrow \qquad 4 \qquad = \qquad 24 \qquad (4 \text{ marks})$$

$$(n-1)(n-2)! = 10$$

7. (apr02-05)

Solve algebraically:
$$\frac{(n-1)!}{(n-3)!} = 30$$

(4 marks)

$$(n-1)(n-2)(n-3)! = 30$$
 $(n-3)!$

$$0^{2} - 30 + 2 = 30$$

8. (specs-22)

A checkerboard is an 8×8 game board, as shown below. Game pieces can travel only diagonally on the dark squares, one diagonal square at a time, and only in a downward direction. If a checker is placed as shown, how many possible paths are there for the checker to reach the opposite side of the game board?

9. (jun02-04)

A class has 30 students.

- a) How many ways can a committee of 3 people be selected from the class? (2 marks)
- b) How many ways can an executive committee consisting of 3 people (president, vice-president, secretary) be selected from the class? (1 mark)
- c) If there are 10 boys and 20 girls in the class, how many ways can a committee of 3 people be selected from the class if the committee must contain 1 boy and 2 girls? (1 mark)

10. (jan03-04)

A toy box contains 4 different cars and 6 different trucks.

- a) In how many ways can a collection of 5 toys be chosen if the collection must consist of 2 cars and 3 trucks? (2 mark
- b) In how many ways can a collection of 5 toys be chosen if the collection must consist of at least 3 cars? (2 marks)

11. (apr03-04)

Determine the first 3 terms of the expansion: $(x-2y)^7$

(4 marks)

$$7C_{0}(x)^{7}$$
 + $7C_{1}(x)^{6}(-2y)^{1}$ + $7C_{2}(x)^{5}(-2y)^{2}$

12. (jun03-04)

There are 7 boys and 5 girls in a group of students.

- a) Calculate the number of ways that a committee of 4 students can be chosen from this group if the committee must have exactly 1 boy.
 (2 marks)
- b) If the committee of 4 students must have a female president, a male vice-president, and 2 other members chosen from the remaining students, how many ways can such a committee be chosen? (2 marks)

b)
$$\frac{5}{5} \times \frac{7}{4} \times 10C_2 = 1575$$

13. (aug03-04)

- a) How many groups of 3 chairs can be chosen from 7 chairs if the chairs are all different colours?
 (2 marks)
- b) How many different ways can 7 chairs be arranged in a row if 2 of the chairs are blue, 3 are yellow, 1 is red and 1 is green? (Assume that all of the chairs are identical except for colour.)
 (2 marks)

14. (jan04-01)

- a) A theatre company of 13 actors consists of 8 men and 5 women. How many different ways are there to choose from the theatre company a group of 7 with exactly 3 men? (2 marks)
- M W
- b) A theatre company of 13 actors consists of 8 men and 5 women. How many different ways are there to choose from the theatre company a group of 6 with at least 4 women?

(2 marks)

15. (apr04-05)

Solve algebraically using factorial notation: $_nP_2 = 90$

(4 marks)

$$\frac{n!}{(n-2)!} = 90$$

$$\frac{n(n-1)(n-2)!}{(n-2)!} = 90$$

$$\frac{(n-2)!}{(n-2)!}$$

$$\frac{1}{1} \frac{1}{1} \frac{1}$$